SPLIT QUATERNIONS AND ROTATIONS IN SEMI EUCLIDEAN SPACE E42
نویسندگان
چکیده
منابع مشابه
On the Quaternionic Curves in the Semi-Euclidean Space E_4_2
In this study, we investigate the semi-real quaternionic curves in the semi-Euclidean space E_4_2. Firstly, we introduce algebraic properties of semi-real quaternions. Then, we give some characterizations of semi-real quaternionic involute-evolute curves in the semi-Euclidean space E42 . Finally, we give an example illustrated with Mathematica Programme.
متن کاملdual split quaternions and screw motion in minkowski 3-space
in this paper, two new hamilton operators are defined and the algebra of dual split quaternions isdeveloped using these operators. it is shown that finite screw motions in minkowski 3-space can be expressedby dual-number ( 3×3 ) matrices in dual lorentzian space. moreover, by means of hamilton operators, screwmotion is obtained in 3-dimensional minkowski space 3r1
متن کاملQuaternions and Rotations *
Up until now we have learned that a rotation in R3 about an axis through the origin can be represented by a 3×3 orthogonal matrix with determinant 1. However, the matrix representation seems redundant because only four of its nine elements are independent. Also the geometric interpretation of such a matrix is not clear until we carry out several steps of calculation to extract the rotation axis...
متن کاملLes Rotations Et Les Quaternions
La construction du corps non commutatif H de quaternions est une variante plus compliquée de la construction du corps commutatif C de nombres complexes. Donc on commence en rappelant la construction de C à partir de R. Les nombres complexes s’écrivent a+ bi avec a, b ∈ R. Donc C est un espace vectoriel sur R de dimension 2 avec base {1, i}. La loi d’addition de C est celle que C possède en tant...
متن کاملSpecial Bertrand Curves in semi-Euclidean space E4^2 and their Characterizations
In [14] Matsuda and Yorozu.explained that there is no special Bertrand curves in Eⁿ and they new kind of Bertrand curves called (1,3)-type Bertrand curves Euclidean space. In this paper , by using the similar methods given by Matsuda and Yorozu [14], we obtain that bitorsion of the quaternionic curve is not equal to zero in semi-Euclidean space E4^2. Obtain (N,B2) type quaternionic Bertrand cur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Mathematical Society
سال: 2007
ISSN: 0304-9914
DOI: 10.4134/jkms.2007.44.6.1313